JDK 14 un

Gra.e‘thM 1m Java
Okosystem

Wolfgang Weigend

Master Principal Solution Engineer | global Java Team

Java Technology & GraalVM and Architecture

Copyright © 2020 Oracle and/or its affiliates.

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

GraalVM Native Image early adopter status

GraalVM Native Image technology (including SubstrateVM) is Early Adopter technology. It
is available only under an early adopter license and remains subjest to potentially
significant further changes, compatibility testing and certification.

Agenda

1 JDK 14 Features

2 Java Eco System and Commitment to Open Source
3 GraalVM Architecture

+ GraalVM Performance

s GraalVM Downloads

s GraalVM Footprint

7 GraalVM Native Image

8 Summary o

JDK Version Numbers and Java Critical Patch Updates

0K 14 v AN -] IDE 1987 0K 3 IOK 488 jim iz pd JOE 11 A0 | iiim w3 ST A4
Aepiasibar 2HE i M Aapgre TH1H Waich F0EE i | S0 Sl BIE Baplamber 2018 Chabe 2010 feramry 2310 Mareh 3

Faslucs Malosas Crbacnl Patcs Lpdats icad Farick U prdnts Fasiice Halanaw Criicel Paech ilpdai I Pagon Qljadai Faniurs Relanas ~imiicel Peech Ledai Grial Peinh gdal Faziors Faleans
LTR-Arisaasn Mol TE-Rals e i, T R s Paiod, TRt frie

e ——— . S ——————————r. N ——— ——# S —————— A ——rf —— A —————————l: " e ————— —

= Rules for Java CPU’s = JDK 14.0.1 - Security Baselines

— Main release for security vulnerabilities JRE Family Version JRE Security Baseline

(Full Version String)

— Covers all JDK families (14, 13, 12, 11, 8, 7, 6)

— CPU release triggers Auto-update 13 13.0.2

— Dates published 12 months in advance 12 12.0.2

— Security Alerts are released as necessary 11 11.0.7+8

— Based off the previous (non-CPU) release - o

— Released simultaneously on java.com and OTN "
9 9.0.4
8 1.8.0_251-b08
7 1.7.0_261-b07
3 1.6.0_221

JDK 6 Month Release Cadence
Option to use Oracle JDK or Oracle OpenJDK

Java SE 18

Java SE 17 ch Oracle OpenJDK [l Oradle JOK |
Java SE 16

Java SE 15

Java SE 14

Java SE 13

Java SE 12

Java SE T

Java SE 10

Java SE 9

Java SE 6 |

JavaSET | | |
2014 2015 2006 2 2017 2018 2019

IR0 S0 P FER NS OB e A SO A

Targeted JEP’s per JDK Release

Java B

Mar L0714

Javay

sept 201/

Java 10

Mar 2018

horiths

Java N

sept 2018

8

Java 12

Mar L01%

16

Java 14

Mar 2040

Issues fixed in JDK 14 per organization

Issues fixed in JDK 14 per organization

JDK BUG System commits
Overall 1986 JIRA issues marked as fixed in JDK 14
1458 issues were completed by Oracle

528 issues were contributed by individual developers and developers working for other organizations O©

JDK 14 Standard and Preview Features

$ javac --release 14 --enable-preview HelloWorld.java

$ java --enable-preview HelloWorld

Copyright © 2020 Oracle and/or its affiliates.

J DK 14 — Features — JEP’s

L{0)
« 343
« 345:
e 340:
« 352
« 358:
« 350:
L To1 b
s 362
e 363:
« 364
« 365:
« 366:
e 367:
« 368:
- 37/0:

Pattern Matching for instanceof (Preview)

Packaging Tool (Incubator)

NUMA-Aware Memory Allocation for G1

JFR Event Streaming

Non-Volatile Mapped Byte Buffers

Helpful NullPointerExceptions

Records (Preview)

Switch Expressions (Standard)

Deprecate the Solaris and SPARC Ports

Remove the Concurrent Mark Sweep (CMS) Garbage Collector
ZGC on macOS

ZGC on Windows

Deprecate the ParallelScavenge + SerialOld GC Combination
Remove the Pack200 Tools and API

Text Blocks (Second Preview)

Foreign-Memory Access API (Incubator)

JEP 305: Pattern Matching (Preview)

Enhance the Java programming language with pattern matching for the
instanceof operator

if (obj instanceof String) ({
String s = (String) obj;
// use s

// new form
if (obj instanceof String s) {
// use s here

}

JDK 14 Switch Expressions (Standard)

int numLetters;

switch (day) {
case MONDAY:
case FRIDAY:

case SUNDAY: . .
numLetters = 6; int numLetters = switch (day) {

break: case MONDAY, FRIDAY, SUNDAY -> 6;
case TUESDAY: case TUESDAY ->7;
case THURSDAY, SATURDAY ->8;

numlLetters = 7;
case WEDNESDAY ->9;

break;
case THURSDAY: b
case SATURDAY:
numlLetters = 8;
break;
case WEDNESDAY:
numlLetters = 9;
break;
default:
throw new lllegalStateException ("wat: " + day);

}

Copyright © 2020 Oracle and/or its affiliates.

JEP 361: Switch Expressions (Standard)
. JDK 14 standard feature

- Unchanged from the second preview in JDK 13
- Without the --enable-preview flag

- https://openjdk.java.net/jeps/361

JDK 14 Text Blocks (Second Preview)

String html = "<htmI>\n" + String html
" <body>\n" + <html>
" <p>Hello, world</p>\n" + <body>
" </body>\n" + <p>Hello, world</p>
"</htmI>\n"; </body>

</html>

Copyright © 2020 Oracle and/or its affiliates. C)

JEP 368: JDK 14 Text Blocks (Second Preview)

To allow finer control of the processing of newlines and white space, we introduce two new escape sequences.
First, explicitly suppresses the insertion of a newline character.

For example, it is common practice to split very long string literals into concatenations of smaller substrings, and then hard wrap
the resulting string expression onto multiple lines:

With the \ <line-terminator> escape sequence this could be expressed as:

For the simple reason that character literals and traditional string literals don't allow embedded newlines, the \<line-terminator>
escape sequence is only applicable to text blocks.

Copyright © 2020 Oracle and/or its affiliates. C)

JEP 368: JDK 14 Text Blocks (Second Preview)

(\u0020).

Escape sequences aren't translated until after incident space stripping, so ' = can act as fence to prevent the stripping of trailing
white space. Using ' - at the end of each line in this example ;

The \s escape sequence can be used in both text blocks and traditional string literals.

Copyright © 2020 Oracle and/or its affiliates.

JEP 359: Records (Preview)

Records provide a compact syntax for declaring classes that are nothing more, or
mostly, plain carriers that serves as simple aggregates

Example:

Records acquire many standard members automaticaly
« A private final field for each component

« A public read accessor for each component

« A public constructor

« Implementations or equals, hashCode and toString

https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/io/ObjectinputStream.html#record-serialization

Packaging Tool (Incubator)

« A JDK command line tool for packaging self-contained Java
applications
« Meant for Java application developers (not end users)
* |nput: a pre-built Java application, a Java runtime
« QOutput: a native application package
« Supported on: Linux, macQOS, Windows

« Provides a straightforward way to give the end user a natural
installation experience on their platform

« Defined by JEP 343:
« https://openjdk.java.net/jeps/343

Why do we need jpackage? (1)

« Asof JDK 1

« Shared, auto-updated Java runtime (System JRE) no longer available
« Java Web Start / applets are gone (and incomplete without the above)

« New deployment model: bundled application + Java runtime

» jpackage takes a Java runtime and your application, and creates a
native package that you can distribute
« Jpackage runs jlink to create runtime, including application if modular
« Developer can run jlink prior to jpackage for additional customization

Copyright © 2020 Oracle and/or its affiliates.

Why do we need jpackage? (2)

* jlink provides part of the puzzle

« Creates a custom Java runtime from the JDK
« can add additional library or application modules
« can exclude unneeded modules
« same file system layout as the JDK
« Developers can copy that plus their app and zip it up
« butthisis not a “ready-to-distribute” bundle
« It's a collection of files, not an installable package or application
* No system integration

« Whatthen?
« Today Java developers “roll their own” using various third-party tools

Copyright © 2020 Oracle and/or its affiliates.

Where does jlink fit in?

« Usejlink to create a custom runtime image:
* Include only the modules you need
« Add your own modules or library modules

 Jpackage will run jlink for you in most cases, but you can run it
directly for more control over the Java runtime image you use

Using jlink

// Custom runtime with only the java.base module

// Java runtime with the specified modules (includes java.base)

// Java runtime with your modular application and its dependencies

// Strip unneeded files

Copyright © 2020 Oracle and/or its affiliates.

Features of jpackage (1)

Can be used to package:
Desktop apps
Command line apps

« (Creation of an application image

« Support the following native packaging formats:
Linux: rom (Red Hat), deb (Debian)
Mac: dmg, pkg
Windows: exe, msi

« Specify JDK / app args that will be used when launching the app
 (Can be invoked from command line, or via the ToolProvider API

Features of jpackage (2)

« Package applications that integrate into the native platform:
« Set file associations to launch app when file with associated suffix is opened
« Launching from platform-specific menu group, e.g., Start menu on Windows
« Desktop shortcuts
« Option to specify update rules for installable packages (such as in rpom/deb)
« Multiple launchers can be created from the same application image

« List of required tools:
« Linux (Red Hat) : romutil (4.0d or later)
« Linux (Ubuntu) : dpkg, fakeroot
« macOS: XCode command line tools
« Windows: WiX Toolset (3.0 or later)

Copyright © 2020 Oracle and/or its affiliates.

Features of jpackage (3)

* What does jpackage not do?

« Does not solve how to get the platform installer to the user
no browser / web integration
* No cross-platform deployment
« No cross-compilation (e.g., must run on macOS to produce dmg)
« No support for jnlp

« JNLPConverter demo can ease transition:

« Takes anlp file + resources (jar files) runs jpackage
« Doesn't handle all cases, but will help you convert

JEP349: JFR Event Streaming (1)

- Expose JDK Flight Recorder data for continuous monitoring

.- Goals

= Provide an API for the continuous consumption of JFR data on disk, both for in-
process and out-of-process applications

= Record the same set of events as in the non-streaming case, with overhead less
than 1% if possible

= Event streaming must be able to co-exist with non-streaming recordings, both
disk and memory based

- Non-Goals
= Provide synchronous callbacks for consumers
= Allow consumption of in-memory recordings

Copyright © 2020 Oracle and, /or its affiliates.

JEP349: JFR Event Streaming (2)

The following example prints the overall CPU usage and locks contended for more
than 10 ms

JEP349: JFR Event Streaming (3)

The RecordingStream class implements the interface that provides a uniform way to filter and consume events
regardless if the source is a live stream or a file on disk

Copyright © 2020 Oracle and/or its affiliates.

JEP358: Helptul NullPointerExceptions (1)

- Improve the usability of generated by the JVM by
describing precisely which variable was null

- The JVM throws a NullPointerException (NPE) at the point in a program
where code tries to dereference a null reference. By analyzing the
program's bytecode instructions, the JVM will determine precisely which
variable was null, and describe the variable (in terms of source code) with
a null-detail message in the NPE. The null-detail message will then be
shown in the JVM's message, alongside the method, filename, and line
number.

- Mittels Programm-ByteCode-Command-Analyse erkennt die JVM, welche
Variable den Wert Null ergibt

lllllllllllllllllllllllllllllllllllllll

o

JEP358: Helptul NullPointerExceptions (2)

The JVM displays an exception message on the same line as the exception type, which can result in long lines. For
readability in a web browser, this JEP shows the null-detail message on a second line, after the exception type.

For example, an NPE from the assignment statement a.i = 99; would generate this message:

If the more complex statement a.b.c.i = 99; throws an NPE, the message would dissect the statement and pinpoint
the cause by showing the full access path which led up to the nuill:

Giving the full access path is more helpful than giving just the name of the null field because it helps the developer to
navigate a line of complex source code, especially if the line of code uses the same name multiple times.

o

Copyright © 2020 Oracle and/or its affiliates.

JEP’s targeted to JDK 15, so far

This release will be the Reference Implementation of Java SE 15, as specified by
in the Java Community Process.

* Features

« 371: Hidden Classes

« 372: Remove the Nashorn JavaScript Engine

« 377. ZGC: A Scalable Low-Latency Garbage Collector

« 3578. Text Blocks

« 379: Shenandoah: A Low-Pause-Time Garbage Collector

o

JEP 371: Hidden Classes

* Introduce hidden classes, which are classes that cannot be used
directly by the bytecode of other classes

» Hidden classes are intended for use by frameworks that generate
classes at run time and use them indirectly, via reflection

A hidden class may be defined as a member of an access control
nest, and may be unloaded independently of other classes

o

Java Eco System and
Commitment to Open
Source

VM

o

Java Eco System

12 Million developers run Java

/ N #1 Programming language
\ #1 Developer choice for the cloud
Q |/ 45 Mrd. active Java Virtual Machines

25 Mrd. cloud connected Java Virtual Machines

Graal on GitHub

https://github.com/oracle/graal

¥
]
]
]
]
W F
[}
[]
]
[]

E FE N N BN

GraalVM Open Source Lines of Code

GraalVM Community Edition is built from the sources of 3.6 million lines of code originated by the GraalVM team and
collaborators, and additionally million lines of sources from projects we depend on like Java, Node.js and others

languages: 1700K

ruby: TOOK

javascript: 250K

GraalVM Project Advisory Board VM

https://www.graalvm.org/community/advisory-board/

» The main goals of the GraalVM Project Advisory Board are to:

o Discuss community engagement and contributor interaction

o Provide cumulative feedback from the community and partner ecosystem

o Discuss ways to drive project awareness and adoption
* The Board will meet at least every three months, and the meeting notes will be published at
* Alina Yurenko is the board’s coordinator

» Initial board composition with members nominated by 12 different companies:

* Bernd Mathiske, Amazon. Creator of the Maxine VM, interested in GraalVM Community Edition, GraalVM Native Image, and AWS Lambda on GraalVM.

* Bruno Caballero, Microdoc. Work on GraalVM integrations in the embedded space.

* Chris Seaton, Shopify. Contributors to TruffleRuby — GraalVM Ruby implementation.

* Chris Thalinger, Twitter. Runs GraalVM Community Edition in production on a large scale system and shares their experience with the community.

* Fabio Niephaus, Hasso Plattner Institute. Academic collaborators and developers of GraalSqueak — A Squeak/Smalltalk implementation for GraalVM.

* Graeme Rocher, Object Computing Inc., Developers of Micronaut — a framework for building microservice and serverless applications, integrated with GraalVM.

* Johan Vos, Gluon. Works on JavaFX and client (desktop/mobile/embedded) support for GraalVM native images.

* Max Rydahl Andersen, Red Hat. Developer on Quarkus — A Kubernetes Native Java stack tailored for OpenJDK HotSpot and GraalVM, crafted from the best of breed
Java libraries and standards.

* Michael Hunger, Neo4j. Integrated with GraalVM to support polyglot dynamic languages for user-defined-procedures in Neo4j, a JVM-based graph database.

» Sébastien Deleuze, Pivotal. Spring Framework committer, works on Spring GraalVM native support.

* Thomas Wuerthinger, Oracle. GraalVM Founder and Project Lead.

* Xiaohong Gong, Arm Technology China. Works on GraalVM Compiler Optimizations on AArch64.

o

GraalVM Architecture

GraalVM Repository Structure

The GraalVM main source repository includes these components

Graal SDK contains long term supported APIs of GraalVM.

Graal compiler written in Java that supports both dynamic and static compilation and can
integrate with the Java HotSpot VM or run standalone.

Truffle language implementation framework for creating languages and instrumentations for
GraalVM.

Tools contains a set of tools for GraalVM languages implemented with the instrumentation
framework.

Substrate VM framework that allows ahead-of-time (AOT) compilation of Java applications
under closed-world assumption into executable images or shared objects.

Sulong is an engine for running LLVM bitcode on GraalVM.

TRegex is an implementation of regular expressions which leverages GraalVM for efficient
compilation of automata.

VM includes the components to build a modular GraalVM image.

o

Java Runtime mit JVM

Java Runtime System

JVM Class Loader

Bytecode Verifier

Memory Management

(Garbage Collection) JIT Code

Interpreter Ganorator

Java API's

Operating System

Hardware

JIT Compiler

« C1Client Compiler

» Minimiert Startup-Zeit

« C2 Server Compiler
» Dauerhafte Performance-Verbesserungen

> Intensivere Analyse vom ausgefuhrten Code

» Optimierungen kdnnen besser platziert werden

JIT Compiler with Tiered Compilation

« C1Client Compiler
» Minimiert Startup-Zeit
> java -client -XX:+TieredCompilation

« C2 Server Compiler
» Lauft mit, aber ohne Tiered Compilation

 Tiered-Compilation Ausfuhrungs-Level
> Level O: interpreted code
> Level 1: simple C1 compiled code (with no profiling)
> Level 2: limited C1 compiled code (with light profiling)
> Level 3: full C1 compiled code (with full profiling)
> Level 4: C2 compiled code (uses profile data from the previous steps)

JIT Compiler working

Inlining

» Code der aufzurufenden Methode/Funktion anstelle des Aufrufs

On-Stack Replacement

» Loop-Compilation, ohne auf den Methodenaufruf zu warten

Escape Analysis
> Automatische Stack-Allokation, ohne GC

De-Optimierung

» Optimierung rtckgangig machen

JIT Compiler written in C++

S\
B

JIT Compiler written in Java

Compiler Interface

N

HotSpot VM

GraalVM

e Graal

> JIT Compiler
o Graalin GraalVM - A new Java JIT Compiler

» Graal integrated via Java Virtual Machine Compiler Interface (JVM Cl)
» Use a JDK with Graal (jdk.internal.vm.compiler)
» java —XX:+UnlockExperimentalVMOptions —XX:+EnableJVMC| —XX:+UseJVMCICompiler —jar my_file.jar

e Truffle

» Language Implementation Framework

e Substrate VM

» Runtime Library and a set of tools for building Java AOT compiled code

GraalVM - Polyglot (1)

C C++

AT ETT

Graal

JVMCI

HotSpot VM

GraalVM - Polyglot (2)

JVM lang

Graal

JVMCI

HotSpot VM

GraalVM - Language Usability

Java Ruby Python
Scala, Groovy, Kotlin R VSCode Plugin
JavaScript LLVM Tool Chain GPU Integration

Node.js WebAssembly
Native Image LLVM Backend
VisualVM

=2 & python

l 1 l !

Automatic transformation of interpreters to compilers

Graal

Engine integration native and managed

R

IDK nado ORACLE

DATABASE

Copyright © 2020, Oracle and/or its affiliates. All rights reserved. | Confidential — Oracle Internal/Restricted/Highly Restricted

Copyright © 2020, Oracle and/or its affiliates. All rights reserved. |

Copyright © 2020, Oracle and/or its affiliates. All rights reserved. |

GraalVM Top 10 Einsatzgebiete

» Test your applications with GraalVM
« Documentation and downloads
http://www.graalvm.org

» Connect your technology with GraalVM

* Integrate GraalVM into your application

. High-performance modern Java

. Low-footprint, fast-startup Java

. Combine JavaScript, Java, Ruby, and R
. Run native languages on the JVM

. Tools that work across all languages

. Extend a JVM-based application

. Extend a native application

» Performance — Native Image A
. Java code as a native library

* Startup time 20ms _ . Polyglot in the database
« Memory consumption less than 20MB 10. Create your own language

« Run your own programming language or DSL
« Build language-agnostic tools

OO ~NOUL P WN -

Copyright © 2020, Oracle and/or its affiliates. All rights reserved. | Confidential — Oracle Internal/Restricted/Highly Restricted

Microservices
Architektur mit
GraalVM

Functional Area Server 1

Tl rima s 1 i
i ramarves &
rieramarvaey 3
microamivcys 4

mECToEsTY e i micrommrvicn §

in Car Frooesaing Unit - Anox

Cloud Camputing
Backend

Fog

Infrastructura Mobile Edge Computing

Linux Platform

In Car Clistar - HA & LB - Sacure Access

il e 3
micremarvien 3
il cremarvicn &

micionarvice &

Functional Area Server 4

erairirke e 1
e rnanry s 2
miErtnnvice 1
EmEranmivice 4
microsmsyice §

M crogarvies 2
micfasarvies 3
micraservice 4
microsarvics §

Copyright © 2020, Oracle and/or its affiliates. All rights reserved. | Confidential — Oracle Internal/Restricted/Highly Restricted

What GraalVM is for Microservices and
Cloud Runtime

Your Java /Java Bytecode

.. Java Service
Application

))
I S

Java VM Java VM

What GraalVM is for Microservices and
Cloud Runtime

Your Java /Java Bytecode Java Service

Application (Native Binary) ﬁ (Native Binary)

GraalvVM GraalVM

Cloud Services — Startup Time

: 23 ms
Helidon
979 ms
; 30 ms
Micronaut
1967 ms
11 ms
Quarkus
983 ms

0O ms 200ms 400ms 600ms 800ms 1000 ms 1200 ms 1400 ms 1600 ms 1800 ms 2000 ms

GraalVM Native Image
JDK 8 (@)

Copyright © 2020, Oracle and/or its affiliates

Cloud Services — Memory Footprint

: 26 MByte
Helidon
107 MByte

: 37 MByte

Micronaut
198 MByte
16 MByte
Quarkus y
160 MByte
0 MByte 50 MByte 100 MByte 150 MByte 200 MByte 250 MByte

GraalVM Native Image
JDK 8 o

Copyright © 2020, Oracle and/or its affiliates

GraalVM Performance

GraalVM Performance on Java

Your Java /Java Bytecode
Application

Java JIT Compiler

Java VM

Copyright © 2020, Oracle and/or its affiliates

GraalVM Performance on Java

Your Java /Java Bytecode
Application

GraalVM JIT Compiler

Java VM

Copyright © 2020, Oracle and/or its affiliates O

Better Performance: Java

Oracle GraalVM Enterprise Edition speeds up Java applications by 32% on average.
Renaissance is the best benchmark for Java. It represents large, real-world Java applications.

GraalVM Enterprise hast 62 optimizations algorithms that optimizes your existing Java Code while running on GraalVM
For some time of Workloads the performance increase can be even bigger

Renaissance Benchmark: http://Renaissance.dev

3,5 %
(=3
m
3,0
Q 2,5
o
a =
b] o
‘g 2,0 o o < a (o)
p < 5
o N B8 = B © o G
— ~ T ~
5 B, 3 g - ; T3 s s O - : =
° S = - - = = o - -
P] 1,0
Q.
(7]
0,5
0,0
X o) X < A S 3 Y -3 <)) . N < e < A & Q
,b,o(' ? o?fb" o,@" d\& bdé & R &ng\ & ",é‘\ &° & o’z’*‘b \@(' & <‘§é ,5o\°\ Q\?‘O\ & & <<‘Q?
g o 4 (2 & < X Q' < o oy 2
N .S o & S X & K « KN 0 9 & & X &)
? X AN & 3 o OF 4 o o 2 S & (2
&y F oo R ¢ F & W & & & &
S @ B S % Q L 3 5
S QO \O (\Q/ @9
>
&

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

Better Performance: Scala

Implementing GraalVM Enterprise for Scala, customers enjoy even higher performance improvement
(average of 38%).

- A 38% performance improvement translates into:

Scalabench

w
o
(=

2,62

2,00

1,40
1,24
1,44
1,19
1,34
1,19
1,38

1,02

o)
¥
o
=
w
>
o 1,50
=]
gl
Q
()
Q
n

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

GraalVM Downloads

GraalVM Downloads

Enterprise Edition

Community Edition

GraalVM Community is available for free for any
use. It is built from the GraalVM sources available
on GitHub. We provide pre-built binaries for
Linux/X86, Linux/ARM, macOS, and Windows
platforms on x86 64-bit systems. Support for the
Windows and Linux/ARM platforms, and the
Python, Ruby and R languages is experimental.

Note

GraalVM Community Edition contains significant
technology from other projects including
OpenJDK and Node.js which are not maintained
by the GraalVM community. GraalVM Enterprise
Edition is recommended for production
applications.

GraalVM Enterprise provides additional performance,
security, and scalability relevant for running
applications in production. You can get a version of
GraalVM Enterprise that is free for evaluation and
developing new applications via the Oracle
Technology Network (OTN), or a commercially
licensed version for production use via the Oracle
Store.

We provide binaries for Linux, macOS, and Windows
platforms on x86 64-bit systems. Support for the
Windows and Linux/ARM platforms, and the Python,
Ruby and R languages is experimental.

GraalVM — Downloads

GraalVM is distributed as Community Edition and Enterprise Edition. Listed below are bundles available:

Oracle GraalVM Enterprise Edition 20
* GraalVM CE 20.0.0 based on OpenJDK 8u242

Ralpase Verson: Java '\.-n."-:.-u.'::l" Bl |-3‘E: Limia el |

* GraalVM CE 20.0.0 based on OpenJDK 11.0.6

Oracle GraalVM Enterprise Edition 20.01 Linux x86 for Java 11 Downloads

B e Installation Guide
Cracle Graal'yhd Epberprme Edifion Cors

The core components of Oracle GraaléM Entesprise Edition. Native Image snd optional language packs are not

* https://www.graalvm.org/downloads/ Inchuded

Status: Early Adopter (Fully Supported)
Instailation Guide

scle GraalVid Enterprse Edition Mative imape Early Adoprer

GraalV'h Erterprise Mative Image is an abead of time compilers

Status Experimentsl

L = 2 U £ o
'L Oracle Graalvid Enterprise Edition Ruby Language Plugin T g

—l

GraaldM implermentation of the Ruby .65 programming language

Statue Experimental

b Dcacle Graalv Enterprme Edition Python Language Plugin installation Guics

| B |
Graaly'td Enderprise implementation of the Python 3.7 programaming lenguages

Status Experimendal

-
"" Cracle Graal'Vvhd Enterprize Edinign Webassambly Lenguags Pligin installation Guids

L

Grzalvi Implementation of Webassembly cptimized for GraalvM Enserprise

GraalVM — Downloads

GraalVM is distributed as Community Edition and Enterprise Edition. Listed below are bundles available:
Oracle GraalVM Enterprise Edition 20

* GraalVM CE 20.0.0 based on OpenJDK 8u242

* GraalVM CE 20.0.0 based on OpenJDK 11.0.6

fior gues

* https://www.graalvm.org/downloads/ aboat s

arion, please refer 1o the Instaliation Guide

Instaflation Guide

Stafus Experimental

GraalVM — Ideal Graph Visualizer

a fymiee e

Ideal Graph Visualizer (IGV) allows GraalVM

" T Ml b sl Bt Bl B
1P e | 5 g ol A R) el R R
dai Epoki [3"] -l

It ——— R = S S s language developers to analyze compilation graphs

It is also useful for guest script developers if they
need to optimize their scripts performance on top

of GraalVM

IGV is no longer a part of GraalVM distribution

C:hZgraalvmi\bin>java -version

Java version "11.0.7" 2020-04-14 LTS

Java (TM) SE Runtime Environment GraalVvM EE 20.0.1 (build 11.0.7+8-LTS-jvmci-20.0-b04)

Java HotSpot (TM) 6&64-Bit Server VM GraalVM EE 20.0.1 ({(build 11.0.7V+B-LTS-)vmci-20, 0-bl4, mixed mode, sharindg)

C:\graalwm\bkin*javap -c HellocWolfgang.class

Compiled from "HelloWalfgang.jawva"

public class HelloWolfgang {

public HelloWolfgang()
Code:

0: aload O
Lz 1r|1.rnli.':r.pen1.-1'l #1 ff Method Hava/lang/Object."<init>":)V
4: return

publies static vold main(java.lang.String[]):
Code:

0: getstatic w2z ff Field java/lang/System.out:Ljava/ie/PrintStream

3: ldec #£3 'r String Hello Wolfgang!

5: invokevirtual #4 // Method java/io/PrintStream.println: (Ljava/lang/String;)V

8: invockestatic #5 // Method java/time/LocalDate.now: ()Ljava/time/LocalDate;
astore 1
getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream;
aload 1
invokedynamic // InvokeDynamic #0:makeConcatWithConstants: (Ljava/time/LocalDate;)Ljava/lang/String;
invokevirtual // Method java/io/PrintStream.println: (Ljava/lang/String;)V
invokestatic // Method java/time/LocalTime.now: ()Ljava/time/LocalTime;
astore 2
getstatic // Field java/lang/System.out:Ljava/ioc/PrintStream;
aload 2
invokedynamic // InvokeDynamic #l:makeConcatWithConstants: (Ljava/time/LocalTime;)Ljava/lang/String;
invokevirtual // Method java/io/PrintStream.println: (Ljava/lang/String;)V
return

Copyright © 2020, Oracle and/or its affiliates. All rights reserved. |

GraalVM Footprint

Run smaller images — Remove parts
of Java you don’t use

Java SE 14 Runtime with jlink

Java SE 14 withjlink vs. Java SE 14 with JRE

New Project: Leyden (1)

New Project, Leyden, whose primary goal will be to address the long-term pain
points of Java's slow startup time, slow time to peak performance, and large
footprint.

Leyden will address these pain points by introducing a concept of _static images__
to the Java Platform, and to the JDK.

_ Astatic image is a standalone program, derived from an application, which runs
that application -- and no other.

~ Astatic image is a closed world: It cannot load classes from outside the image,
nor can it spin new bytecodes at run time.

New Project: Leyden (2)

Project Leyden will take inspiration from past efforts to explore this space,
including the GNU Compiler for Java
Leyden will add static images to the Java Platform Specification,

Developers who use only

the standard, specified static-image feature will then be able to switch with ease
between Leyden (in the JDK), and whatever other
conforming implementations may arise, choosing amongst tradeoffs of compile
time, startup time, and image size.

Leyden will, rather, be based upon existing components in
the JDK such as the HotSpot JVM, the ‘jaotc’ ahead-of-time compiler, application
class-data sharing, and the ‘jlink" linking tool.

o

VM

Run smaller images — Java

« GraalVM compiles Java source to a single native binary
* Tinyimage sizes
 Low VM overhead

GraalVM Native Image

GraalVM Native Image

Makes your Java code ready for the Cloud

Instant startup

Low memory footprint

Single self-contained binary

uuuuuuu

GraalVM Native Image

jar files

application.jar reachable code

dependencies.jar h - o
) Z analysis
rt.jar

VM components

native executable

Japplication
1010
0100
0010
1100
1110

GraalVM Native Image Generation Options

The command line needs to provide the class path for all classes
using the familiar option from the launcher: is followed by a list of
directories or .jar files, separated by :. The name of the class containing the

method is the last argument; Or you can use and provide a file
that specifies the method in its manifest.

The syntax of the native-image command is:

. to build an executable file for a class in the
current working directory. Invoking it executes the native-compiled code of that class.

C jarfile to build animage for a jar file. ©

GraalVM Native Image Generation Options

Oracle GraalVM Enterprise Edition Native Image Early Adopter

GraalVM Native Image is ahead of time compilation functionality and is offered as an early adopter preview.

J
L

Oracle GraalVM Enterprise Edition Native Image preview for Linux

(SHA1Hash - 46356d75233bb0d03c9322bf4ad376f17598d20b)

wolf@wolf-ThinkPad-T450:~/gs /m 1$ gu -L install '/home/wolf/Downloads/native-image-installable-svm-svmee-linux-amd64-19.2.1.jar’
Processing component archwe }home;’wolﬂ[}ownloads,’natwe image-installable-svm-svmee-linux-amd64-19.2.1. jar

Installing new component Natwe Image (org graalvm native-image, version 19.2.1)

wolf@wolf-ThinkPad-T450: aal/graalvm-ee-19.2.15 [

S /src
$ /home/wolf/graal/graalvm-ee-19.2.1/jre/bin/native-image —-cp HelloWorld.class

Closed World Assumption

- The points-to analysis needs to see all bytecode

— Otherwise aggressive AOT optimizations are not possible
— Otherwise unused classes, methods, and fields cannot be removed
— Otherwise a class loader / bytecode interpreter is necessary at run time

- Dynamic parts of Java require configuration at build time

— Reflection, JNI, Proxy, resources, ...
— That's what this talk is about

- No loading of new classes at run time

Image Heap

- Execution at run time starts with an initial heap: the “image heap”

— Objects are allocated in the Java VM that runs the image generator
— Heap snapshotting gathers all objects that are reachable at run time

- Do things once at build time instead at every application startup

— (lass initializers, initializers for static and static final fields
— Explicit code that is part of a so-called “Feature”

- Examples for objects in the image heap

— Jjava.lang.Class objects, Enum constants

One Compiler, Many Configurations .

Java HotSpot VM Your Application

JIT Compilation Drgiuiies

GraalVM
Compiler (1)

App.jar

@ Compiler configured for just-in-time compilation inside the Java HotSpot VM

© 2019 Oracle O

One Compiler, Many Configurations .

Java HotSpot VM Your Application
JIT Compilation Drgiuiies
GraalVM App]ar
Compiler (1)
(2

-~y -
-— -
-----—-_———-__——

@ Compiler configured for just-in-time compilation inside the Java HotSpot VM
@® Compiler also used for just-in-time compilation of JavaScript code

© 2019 Oracle O

One Compiler, Many Configurations .

Java HotSpot VM Native Image Generator Native Image

Executes Builds

JIT Compilation

GraalVM
Compiler (1)

Points-to Analysis AOT Compilation

GraalVM GraalVM
Compiler (2) Compiler (3)

Your
Application

@ Compiler configured for just-in-time compilation inside the Java HotSpot VM
@® Compiler configured for static points-to analysis
©® Compiler configured for ahead-of-time compilation

© 2019 Oracle O

One Compiler, Many Configurations .

Native Image
Java HotSpot VM Native Image Generator

JIT Compilation [REASSECEI Points-to Analysis AOT Compilation GRS -

GraalVM GraalVM GraalVM
Compiler (1) Compiler (2) Compiler (3)

JIT Compilation

GraalVM
Compiler (3)

@ Compiler configured for just-in-time compilation inside the Java HotSpot VM
® Compiler configured for static points-to analysis

©® Compiler configured for ahead-of-time compilation

@ Compiler configured for just-in-time compilation inside a Native Image

© 2019 Oracle O

Native Image - Details

Input:
All classes from application,
libraries, and VM

L Ahead-of-Time
Application Points-to Analysis Compilation

| Libraries i |

Run Initializations

B |

W Heap Snapshotting Image Heap
Writing

lterative analysis until
fixed point is reached

© 2019 Oracle

VM

Output:
Native executable

Codein
Text Section

Image Heap in
Data Section

Benetfits of the Image Heap

Without GraalVM GraalVM Native Image
Native Image (default)

Compile Sources Compile Sources

Build time

Run time

Load Classes Load Classes

Build time

Run time
Load Configuration File

Run Workload

Load Configuration File

Run Workload

© 2019 Oracle

VM

GraalVM Native Image:
Load configuration file
at build time

Compile Sources

Load Classes

Load Configuration File
Build time

Run time

Run Workload

o

Roadmap

GraalVM Version Roadmap — Major Versions

We release new major versions of GraalVM every 3 months
on a predictable schedule, always to the closest Tuesday to
the 17th of the month of February, May, August, and
November

Major releases become inactive once a new release is
published

Only the last major release of the year continues to be

updated for the full next year
(@)

GraalVM Version Roadmap - Critical Patch Updates

Critical Patch Updates (CPU) for GraalVM follow the
schedule for all CPU releases of Oracle as described here.

The release happens quarterly always on the closest
Tuesday to the 17th of the month of January, April, July, and
October

All active releases receive patch updates

o

LTS paich

Aug 20, 2019:
Oct 15, 2019:
Nov 19, 2019:
Jan 14, 2020:
Feb 18, 2020:
Apr 14, 2020:

May 19, 2020:

Jul 14, 2020:
Aug 18, 2020:
Oct 20, 2020:

19.2

19.3
19.3.1 (CPU)
20.0

19.3.2 (CPU),

20.1

19.3.3 (CPU),

20.2

19.3.4 (CPU),

2033

Nov 17, 2020:
Jan 19, 2021:
Feb 16, 2021:
Apr 20, 2021:

May 18, 2021:

Jul 20, 2021:

Aug 17, 2021:
Oct 19, 2021:
Nov 16, 2021:

GraalVM Version Roadmap — Release Dates

Find below a graphical visualizations of the release roadmap
and the dates and version numbers of upcoming releases

20.3
20.3.1 (CPU)
21.0
20.3.2 (CPU),
21.1
20.3.3 (CPU),
21.2
20.3.4 (CPU),
21.3

Summary

Building a universal VM is a community effort

> GraalVM is the new universal VM

Documentation and downloads:
O http://www.graalvm.org

» Connect your technology with GraalVM
* Integrate GraalVM into your application
* Run your own programming language or DSL
» Build language-agnostic tools

» Works well with open source projects

» Eclipse Vert.x Tool-Kit, Fn Project, Gluon Client Plugin,

Picocli Java-Command-Line-Parser
* Helidon, Micronaut, Quarkus
» Features a native-image tool
« Converts Java to native machine code using AOT
» Footprint — Native Image

« Startup time 20ms
* Memory consumption less than 20MB

rwamagazin

Lol

| Bl

L

¥

pui onE JacD MALH

o

PERFORMANGCE

el

GRAALKM
STARTET DURCH

Copyright © 2020, Oracle and/or its affiliates. All rights reserved. | Confidential — Oracle Internal/Restricted/Highly Restricted

-Danke!

Wolfgang.Weigend @oracle.com

: Twitter: @wolflook

b J

https://jaxenter.de/java/graalvm-virtual-machine-java-oracle-91288

o

&

