
Copyright © 2020 Oracle and/or its affiliates.

JDK 14 und
GraalVM im Java

Ökosystem
Wolfgang Weigend

Master Principal Solution Engineer | global Java Team

Java Technology & GraalVM and Architecture

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

GraalVM Native Image early adopter status

GraalVM Native Image technology (including SubstrateVM) is Early Adopter technology. It
is available only under an early adopter license and remains subjest to potentially
significant further changes, compatibility testing and certification.

Agenda
JDK 14 FeaturesJDK 14 FeaturesJDK 14 FeaturesJDK 14 Features

Java Java Java Java Eco Eco Eco Eco SystemSystemSystemSystem and Commitment to Open and Commitment to Open and Commitment to Open and Commitment to Open SourceSourceSourceSource

GraalVM ArchitectureGraalVM ArchitectureGraalVM ArchitectureGraalVM Architecture

GraalVM PerformanceGraalVM PerformanceGraalVM PerformanceGraalVM Performance

GraalVM DownloadsGraalVM DownloadsGraalVM DownloadsGraalVM Downloads

GraalVM GraalVM GraalVM GraalVM FootprintFootprintFootprintFootprint

GraalVMGraalVMGraalVMGraalVM Native Native Native Native IIIImagemagemagemage

SummarySummarySummarySummary

1

2

3

4

5

6

7

8

 Rules for Java CPU’s
 Main release for security vulnerabilities

 Covers all JDK families (14, 13, 12, 11, 8, 7, 6)

 CPU release triggers Auto-update

 Dates published 12 months in advance

 Security Alerts are released as necessary

 Based off the previous (non-CPU) release

 Released simultaneously on java.com and OTN

 JDK 14.0.1 - Security Baselines

JRE Family Version
JRE Security Baseline

(Full Version String)

13 13.0.2

12 12.0.2

11 11.0.7+8

10 10.0.2

9 9.0.4

8 1.8.0_251-b08

7 1.7.0_261-b07

6 1.6.0_221

JDK Version Numbers and Java JDK Version Numbers and Java JDK Version Numbers and Java JDK Version Numbers and Java Critical Patch UpdatesCritical Patch UpdatesCritical Patch UpdatesCritical Patch Updates

JDK 6 Month Release Cadence
Option to use Oracle JDK or Oracle OpenJDK

Targeted JEP’s per JDK Release

Issues fixed in JDK 14 per organization
https://blogs.oracle.com/javahttps://blogs.oracle.com/javahttps://blogs.oracle.com/javahttps://blogs.oracle.com/java----platformplatformplatformplatform----group/thegroup/thegroup/thegroup/the----arrivalarrivalarrivalarrival----ofofofof----javajavajavajava----14141414

• JDK BUG System commitsJDK BUG System commitsJDK BUG System commitsJDK BUG System commits

• Overall Overall Overall Overall 1986 1986 1986 1986 JIRA issues marked as fixed in JDK JIRA issues marked as fixed in JDK JIRA issues marked as fixed in JDK JIRA issues marked as fixed in JDK 14141414

• 1458145814581458 issues were completed by Oracleissues were completed by Oracleissues were completed by Oracleissues were completed by Oracle

• 528 528 528 528 issues were contributed by individual developers and developers working for other organizationsissues were contributed by individual developers and developers working for other organizationsissues were contributed by individual developers and developers working for other organizationsissues were contributed by individual developers and developers working for other organizations

JDK 14 Standard and Preview Features
$ javac HelloWorld.java // // // // Do not enable any preview featuresDo not enable any preview featuresDo not enable any preview featuresDo not enable any preview features

$ javac --release 14 --enable-preview HelloWorld.java // // // // Enable all preview features of JDK 14Enable all preview features of JDK 14Enable all preview features of JDK 14Enable all preview features of JDK 14

$ java --enable-preview HelloWorld // // // // Run with preview features of JDK Run with preview features of JDK Run with preview features of JDK Run with preview features of JDK 14141414

$ javac --release 14 --enable-preview HelloWolfgang.java

$ java HelloWolfgang

Error: LinkageError occurred while loading main class HelloWolfgang

java.lang.UnsupportedClassVersionError: Preview features are not enabled for

HelloWolfgang (class file version 58.65535). Try running with '--enable-preview'

$ java --enable-preview HelloWolfgang

Hello Wolfgang!

Date today = 2020-04-14

Time now = 20:57:07.180454400

Copyright © 2020 Oracle and/or its affiliates.

JDK 14 – Features – JEP’s
• 305: 305: 305: 305: Pattern Matching for Pattern Matching for Pattern Matching for Pattern Matching for instanceofinstanceofinstanceofinstanceof (Preview)(Preview)(Preview)(Preview)

• 343343343343: : : : Packaging Tool (Incubator)Packaging Tool (Incubator)Packaging Tool (Incubator)Packaging Tool (Incubator)

• 345: 345: 345: 345: NUMANUMANUMANUMA----Aware Memory Allocation for G1Aware Memory Allocation for G1Aware Memory Allocation for G1Aware Memory Allocation for G1

• 349: 349: 349: 349: JFR Event StreamingJFR Event StreamingJFR Event StreamingJFR Event Streaming

• 352: 352: 352: 352: NonNonNonNon----Volatile Mapped Byte BuffersVolatile Mapped Byte BuffersVolatile Mapped Byte BuffersVolatile Mapped Byte Buffers

• 358: 358: 358: 358: Helpful Helpful Helpful Helpful NullPointerExceptionsNullPointerExceptionsNullPointerExceptionsNullPointerExceptions

• 359: 359: 359: 359: Records (Preview)Records (Preview)Records (Preview)Records (Preview)

• 361: 361: 361: 361: Switch Expressions (Standard)Switch Expressions (Standard)Switch Expressions (Standard)Switch Expressions (Standard)

• 362: 362: 362: 362: Deprecate the Solaris and SPARC PortsDeprecate the Solaris and SPARC PortsDeprecate the Solaris and SPARC PortsDeprecate the Solaris and SPARC Ports

• 363: 363: 363: 363: Remove the Concurrent Mark Sweep (CMS) Garbage CollectorRemove the Concurrent Mark Sweep (CMS) Garbage CollectorRemove the Concurrent Mark Sweep (CMS) Garbage CollectorRemove the Concurrent Mark Sweep (CMS) Garbage Collector

• 364: 364: 364: 364: ZGC on ZGC on ZGC on ZGC on macOSmacOSmacOSmacOS

• 365: 365: 365: 365: ZGC on WindowsZGC on WindowsZGC on WindowsZGC on Windows

• 366: 366: 366: 366: Deprecate the Deprecate the Deprecate the Deprecate the ParallelScavengeParallelScavengeParallelScavengeParallelScavenge + + + + SerialOldSerialOldSerialOldSerialOld GC CombinationGC CombinationGC CombinationGC Combination

• 367: 367: 367: 367: Remove the Pack200 Tools and APIRemove the Pack200 Tools and APIRemove the Pack200 Tools and APIRemove the Pack200 Tools and API

• 368: 368: 368: 368: Text Blocks (Second Preview)Text Blocks (Second Preview)Text Blocks (Second Preview)Text Blocks (Second Preview)

• 370: 370: 370: 370: ForeignForeignForeignForeign----Memory Access API (Incubator)Memory Access API (Incubator)Memory Access API (Incubator)Memory Access API (Incubator)

https://openjdk.java.net/projects/jdk/14/

JEP 305: Pattern Matching (Preview)

• Enhance the Java programming language with pattern matching for the Enhance the Java programming language with pattern matching for the Enhance the Java programming language with pattern matching for the Enhance the Java programming language with pattern matching for the
instanceofinstanceofinstanceofinstanceof operatoroperatoroperatoroperator

if (obj instanceof String) {
String s = (String) obj;
// use s

}

// new form
if (obj instanceof String s) {

// use s here
}

https://openjdk.java.net/jeps/305

JDK 14 Switch Expressions (Standard)

• Switch Switch Switch Switch ExpressionsExpressionsExpressionsExpressions

Copyright © 2020 Oracle and/or its affiliates.

int numLetters;
switch (day) {

case MONDAY:
case FRIDAY:
case SUNDAY:

numLetters = 6;
break;

case TUESDAY:
numLetters = 7;
break;

case THURSDAY:
case SATURDAY:

numLetters = 8;
break;

case WEDNESDAY:
numLetters = 9;
break;

default:
throw new IllegalStateException (”wat: " + day);

}

After:
int numLetters = switch (day) {

case MONDAY, FRIDAY, SUNDAY -> 6;
case TUESDAY -> 7;
case THURSDAY, SATURDAY -> 8;
case WEDNESDAY -> 9;

};

JEP 361: Switch Expressions (Standard)
• JDK 14 standard feature

• Unchanged from the second preview in JDK 13

• Without the --enable-preview flag

• https://openjdk.java.net/jeps/361

Copyright © 2020 Oracle and/or its affiliates.

JDK 14 Text Blocks (Second Preview)

• Text Blocks (Text Blocks (Text Blocks (Text Blocks (Preview)Preview)Preview)Preview)

Copyright © 2020 Oracle and/or its affiliates.

String html = "<html>\n" +

" <body>\n" +

" <p>Hello, world</p>\n" +

" </body>\n" +

"</html>\n";

String html = """

<html>

<body>

<p>Hello, world</p>

</body>

</html>

""";

JEP 368: JDK 14 Text Blocks (Second Preview)
New escape sequencesNew escape sequencesNew escape sequencesNew escape sequences

To allow finer control of the processing of newlines and white space, we introduce two new escape sequences.To allow finer control of the processing of newlines and white space, we introduce two new escape sequences.To allow finer control of the processing of newlines and white space, we introduce two new escape sequences.To allow finer control of the processing of newlines and white space, we introduce two new escape sequences.

First, First, First, First, the the the the \\\\<line<line<line<line----terminator> escape sequence terminator> escape sequence terminator> escape sequence terminator> escape sequence explicitly suppresses the insertion of a newline character.explicitly suppresses the insertion of a newline character.explicitly suppresses the insertion of a newline character.explicitly suppresses the insertion of a newline character.

For example, it is common practice to split very long string literals into concatenations of smaller substrings, and then harFor example, it is common practice to split very long string literals into concatenations of smaller substrings, and then harFor example, it is common practice to split very long string literals into concatenations of smaller substrings, and then harFor example, it is common practice to split very long string literals into concatenations of smaller substrings, and then hard wd wd wd wrap rap rap rap
the resulting string expression onto multiple lines:the resulting string expression onto multiple lines:the resulting string expression onto multiple lines:the resulting string expression onto multiple lines:

String literal = “Der Satz fäng an " +

“und geht weiter " +

“bis zum Schluss.";

With the With the With the With the \\\\<line<line<line<line----terminator> escape sequence this could be expressed as:terminator> escape sequence this could be expressed as:terminator> escape sequence this could be expressed as:terminator> escape sequence this could be expressed as:

String text = """

Der Satz fäng an \

und geht weiter \

bis zum Schluss.\

""";

For For For For the simple reason that character literals and traditional string literals don't allow embedded newlines, the the simple reason that character literals and traditional string literals don't allow embedded newlines, the the simple reason that character literals and traditional string literals don't allow embedded newlines, the the simple reason that character literals and traditional string literals don't allow embedded newlines, the \\\\<line<line<line<line----terminator> terminator> terminator> terminator>
escape sequence is only applicable to text blocks.escape sequence is only applicable to text blocks.escape sequence is only applicable to text blocks.escape sequence is only applicable to text blocks.

Copyright © 2020 Oracle and/or its affiliates.

JEP 368: JDK 14 Text Blocks (Second Preview)
Second, the new Second, the new Second, the new Second, the new \\\\s escape sequence simply translates to a single space s escape sequence simply translates to a single space s escape sequence simply translates to a single space s escape sequence simply translates to a single space ((((\\\\u0020).u0020).u0020).u0020).

Escape sequences aren't translated until after incident space stripping, so Escape sequences aren't translated until after incident space stripping, so Escape sequences aren't translated until after incident space stripping, so Escape sequences aren't translated until after incident space stripping, so \\\\s s s s can act as fence to prevent the stripping of trailing can act as fence to prevent the stripping of trailing can act as fence to prevent the stripping of trailing can act as fence to prevent the stripping of trailing
white space. Using white space. Using white space. Using white space. Using \\\\s s s s at the end of each line in this example at the end of each line in this example at the end of each line in this example at the end of each line in this example guarantees that each line is exactly six characters longguarantees that each line is exactly six characters longguarantees that each line is exactly six characters longguarantees that each line is exactly six characters long::::

String colors = """

red \s

green\s

blue \s

""";

The The The The \\\\s escape sequence can be used in both text blocks and traditional string literals.s escape sequence can be used in both text blocks and traditional string literals.s escape sequence can be used in both text blocks and traditional string literals.s escape sequence can be used in both text blocks and traditional string literals.

Copyright © 2020 Oracle and/or its affiliates.

JEP 359: Records (Preview)

• Records Records Records Records provide a compact syntax for declaring classes provide a compact syntax for declaring classes provide a compact syntax for declaring classes provide a compact syntax for declaring classes that are nothing more, or that are nothing more, or that are nothing more, or that are nothing more, or
mostly, plain carriers that serves as simple aggregatesmostly, plain carriers that serves as simple aggregatesmostly, plain carriers that serves as simple aggregatesmostly, plain carriers that serves as simple aggregates

• Example:Example:Example:Example: record Point(int x, int y) { }

• Records acquire many standard members automaticalyRecords acquire many standard members automaticalyRecords acquire many standard members automaticalyRecords acquire many standard members automaticaly
• A private final field for each componentA private final field for each componentA private final field for each componentA private final field for each component

• A public read accessor for each componentA public read accessor for each componentA public read accessor for each componentA public read accessor for each component

• A public constructorA public constructorA public constructorA public constructor

• Implementations or equals, hashCode and toStringImplementations or equals, hashCode and toStringImplementations or equals, hashCode and toStringImplementations or equals, hashCode and toString

• Replacement of data class with „records“ Replacement of data class with „records“ Replacement of data class with „records“ Replacement of data class with „records“

• Records as a “simple Records as a “simple Records as a “simple Records as a “simple data data data data encapsulation”encapsulation”encapsulation”encapsulation”

• “Records “Records “Records “Records are serialized differently than ordinary serializable or are serialized differently than ordinary serializable or are serialized differently than ordinary serializable or are serialized differently than ordinary serializable or externalizableexternalizableexternalizableexternalizable objects. objects. objects. objects.
The serialized form of a record object is a sequence of values derived from the The serialized form of a record object is a sequence of values derived from the The serialized form of a record object is a sequence of values derived from the The serialized form of a record object is a sequence of values derived from the
record record record record componentscomponentscomponentscomponents.”.”.”.”httpshttpshttpshttps://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/io/ObjectInputStream.html#record://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/io/ObjectInputStream.html#record://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/io/ObjectInputStream.html#record://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/io/ObjectInputStream.html#record----serializationserializationserializationserialization

https://openjdk.java.net/jeps/359

Packaging Tool (Incubator)
What is jpackage?
• A JDK command line tool for packaging self-contained Java

applications
• Meant for Java application developers (not end users)

• Input: a pre-built Java application, a Java runtime

• Output: a native application package

• Supported on: Linux, macOS, Windows

• Provides a straightforward way to give the end user a natural
installation experience on their platform

• Defined by JEP 343:
• https://openjdk.java.net/jeps/343

Copyright © 2020 Oracle and/or its affiliates.

Why do we need jpackage? (1)

• As of JDK 11:
• Shared, auto-updated Java runtime (System JRE) no longer available

• Java Web Start / applets are gone (and incomplete without the above)

• New deployment model: bundled application + Java runtime
• jpackage takes a Java runtime and your application, and creates a

native package that you can distribute
• jpackage runs jlink to create runtime, including application if modular

• Developer can run jlink prior to jpackage for additional customization

Copyright © 2020 Oracle and/or its affiliates.

Why do we need jpackage? (2)

• jlink provides part of the puzzle
• Creates a custom Java runtime from the JDK

• can add additional library or application modules

• can exclude unneeded modules

• same file system layout as the JDK

• Developers can copy that plus their app and zip it up
• but this is not a “ready-to-distribute” bundle

• it's a collection of files, not an installable package or application

• no system integration

• What then?
• Today Java developers “roll their own” using various third-party tools

Copyright © 2020 Oracle and/or its affiliates.

Where does jlink fit in?

• Use jlink to create a custom runtime image:
• Include only the modules you need

• Add your own modules or library modules

• jpackage will run jlink for you in most cases, but you can run it
directly for more control over the Java runtime image you use

Copyright © 2020 Oracle and/or its affiliates.

Using jlink

// Custom runtime with only the java.base module

jlink --output my-jdk --add-modules java.base

// Java runtime with the specified modules (includes java.base)

jlink --output my-jdk --add-modules java.desktop,java.datatransfer

// Java runtime with your modular application and its dependencies

// Strip unneeded files

jlink --output my-jdk --module-path mymod.jar --add-modules mymod \

--no-man-pages --no-header-files --strip-native-commands

Copyright © 2020 Oracle and/or its affiliates.

Features of jpackage (1)

• Can be used to package:
• Desktop apps

• Command line apps

• Creation of an application image

• Support the following native packaging formats:
• Linux: rpm (Red Hat), deb (Debian)

• Mac: dmg, pkg

• Windows: exe, msi

• Specify JDK / app args that will be used when launching the app

• Can be invoked from command line, or via the ToolProvider API

Copyright © 2020 Oracle and/or its affiliates.

Features of jpackage (2)

• Package applications that integrate into the native platform:
• Set file associations to launch app when file with associated suffix is opened

• Launching from platform-specific menu group, e.g., Start menu on Windows

• Desktop shortcuts

• Option to specify update rules for installable packages (such as in rpm/deb)

• Multiple launchers can be created from the same application image

• List of required tools:
• Linux (Red Hat) : rpmutil (4.0d or later)

• Linux (Ubuntu) : dpkg, fakeroot

• macOS: XCode command line tools

• Windows: WiX Toolset (3.0 or later)

Copyright © 2020 Oracle and/or its affiliates.

Features of jpackage (3)

• What does jpackage not do?
• Does not solve how to get the platform installer to the user

• no browser / web integration

• No cross-platform deployment

• No cross-compilation (e.g., must run on macOS to produce dmg)

• No support for jnlp

• JNLPConverter demo can ease transition:
• Takes a jnlp file + resources (jar files) runs jpackage

• Doesn’t handle all cases, but will help you convert

Copyright © 2020 Oracle and/or its affiliates.

JEP349: JFR Event Streaming (1)
• Expose Expose Expose Expose JDK Flight Recorder data for continuous JDK Flight Recorder data for continuous JDK Flight Recorder data for continuous JDK Flight Recorder data for continuous monitoringmonitoringmonitoringmonitoring

• GoalsGoalsGoalsGoals
 Provide Provide Provide Provide an API for the continuous consumption of JFR data on disk, both for inan API for the continuous consumption of JFR data on disk, both for inan API for the continuous consumption of JFR data on disk, both for inan API for the continuous consumption of JFR data on disk, both for in----
process and outprocess and outprocess and outprocess and out----ofofofof----process process process process applicationsapplicationsapplicationsapplications

 Record Record Record Record the same set of events as in the nonthe same set of events as in the nonthe same set of events as in the nonthe same set of events as in the non----streaming case, with overhead less streaming case, with overhead less streaming case, with overhead less streaming case, with overhead less
than 1% if than 1% if than 1% if than 1% if possiblepossiblepossiblepossible

 Event Event Event Event streaming must be able to costreaming must be able to costreaming must be able to costreaming must be able to co----exist with nonexist with nonexist with nonexist with non----streaming recordings, both streaming recordings, both streaming recordings, both streaming recordings, both
disk and memory disk and memory disk and memory disk and memory basedbasedbasedbased

• NonNonNonNon----GoalsGoalsGoalsGoals
 Provide Provide Provide Provide synchronous callbacks for synchronous callbacks for synchronous callbacks for synchronous callbacks for consumersconsumersconsumersconsumers

 Allow Allow Allow Allow consumption of inconsumption of inconsumption of inconsumption of in----memory memory memory memory recordingsrecordingsrecordingsrecordings

Copyright © 2020 Oracle and/or its affiliates.

JEP349: JFR Event Streaming (2)
The following example prints the overall CPU usage and locks contended for more The following example prints the overall CPU usage and locks contended for more The following example prints the overall CPU usage and locks contended for more The following example prints the overall CPU usage and locks contended for more
than 10 than 10 than 10 than 10 msmsmsms

try (var rs = new RecordingStream()) {

rs.enable("jdk.CPULoad").withPeriod(Duration.ofSeconds(1));

rs.enable("jdk.JavaMonitorEnter").withThreshold(Duration.ofMillis(10));

rs.onEvent("jdk.CPULoad", event -> {

System.out.println(event.getFloat("machineTotal"));

});

rs.onEvent("jdk.JavaMonitorEnter", event -> {

System.out.println(event.getClass("monitorClass"));

});

rs.start();

}

Copyright © 2020 Oracle and/or its affiliates.

JEP349: JFR Event Streaming (3)
The The The The RecordingStreamRecordingStreamRecordingStreamRecordingStream class implements the interface class implements the interface class implements the interface class implements the interface jdk.jfr.consumer.EventStreamjdk.jfr.consumer.EventStreamjdk.jfr.consumer.EventStreamjdk.jfr.consumer.EventStream that provides a uniform way to filter and consume events that provides a uniform way to filter and consume events that provides a uniform way to filter and consume events that provides a uniform way to filter and consume events
regardless if the source is a live stream or a file on regardless if the source is a live stream or a file on regardless if the source is a live stream or a file on regardless if the source is a live stream or a file on diskdiskdiskdisk

public interface EventStream extends AutoCloseable {

public static EventStream openRepository();

public static EventStream openRepository(Path directory);

public static EventStream openFile(Path file);

void setStartTime(Instant startTime);

void setEndTime(Instant endTime);

void setOrdered(boolean ordered);

void setReuse(boolean reuse);

void onEvent(Consumer<RecordedEvent> handler);

void onEvent(String eventName, Consumer<RecordedEvent handler);

void onFlush(Runnable handler);

void onClose(Runnable handler);

void onError(Runnable handler);

void remove(Object handler);

void start();

void startAsync();

void awaitTermination();

void awaitTermination(Duration duration);

void close();

} Copyright © 2020 Oracle and/or its affiliates.

JEP358: Helpful NullPointerExceptions (1)
• Improve Improve Improve Improve the usability of the usability of the usability of the usability of NullPointerExceptionsNullPointerExceptionsNullPointerExceptionsNullPointerExceptions generated by the JVM by generated by the JVM by generated by the JVM by generated by the JVM by
describing precisely which variable was describing precisely which variable was describing precisely which variable was describing precisely which variable was nullnullnullnull

• The The The The JVM throws a JVM throws a JVM throws a JVM throws a NullPointerExceptionNullPointerExceptionNullPointerExceptionNullPointerException (NPE) at the point in a program (NPE) at the point in a program (NPE) at the point in a program (NPE) at the point in a program
where code tries to dereference a null reference. By analyzing the where code tries to dereference a null reference. By analyzing the where code tries to dereference a null reference. By analyzing the where code tries to dereference a null reference. By analyzing the
program's bytecode instructions, the JVM will determine precisely which program's bytecode instructions, the JVM will determine precisely which program's bytecode instructions, the JVM will determine precisely which program's bytecode instructions, the JVM will determine precisely which
variable was null, and describe the variable (in terms of source code) with variable was null, and describe the variable (in terms of source code) with variable was null, and describe the variable (in terms of source code) with variable was null, and describe the variable (in terms of source code) with
a nulla nulla nulla null----detail message in the NPE. The nulldetail message in the NPE. The nulldetail message in the NPE. The nulldetail message in the NPE. The null----detail message will then be detail message will then be detail message will then be detail message will then be
shown in the JVM's message, alongside the method, filename, and line shown in the JVM's message, alongside the method, filename, and line shown in the JVM's message, alongside the method, filename, and line shown in the JVM's message, alongside the method, filename, and line
numbernumbernumbernumber....

• MittelsMittelsMittelsMittels ProgrammProgrammProgrammProgramm----ByteCodeByteCodeByteCodeByteCode----CommandCommandCommandCommand----AnalyseAnalyseAnalyseAnalyse erkennterkennterkennterkennt die JVM, die JVM, die JVM, die JVM, welchewelchewelchewelche
Variable den Wert Null Variable den Wert Null Variable den Wert Null Variable den Wert Null ergibtergibtergibtergibt

Copyright © 2020 Oracle and/or its affiliates.

JEP358: Helpful NullPointerExceptions (2)
The The The The JVM displays an exception message on the same line as the exception type, which can result in long lines. For JVM displays an exception message on the same line as the exception type, which can result in long lines. For JVM displays an exception message on the same line as the exception type, which can result in long lines. For JVM displays an exception message on the same line as the exception type, which can result in long lines. For
readability in a web browser, this JEP shows the nullreadability in a web browser, this JEP shows the nullreadability in a web browser, this JEP shows the nullreadability in a web browser, this JEP shows the null----detail message on a second line, after the exception type.detail message on a second line, after the exception type.detail message on a second line, after the exception type.detail message on a second line, after the exception type.

For example, an NPE from the assignment statement For example, an NPE from the assignment statement For example, an NPE from the assignment statement For example, an NPE from the assignment statement a.ia.ia.ia.i = 99; would generate this message:= 99; would generate this message:= 99; would generate this message:= 99; would generate this message:

Exception in thread "main" java.lang.NullPointerException:

Cannot assign field "i" because "a" is null

at Prog.main(Prog.java:5)

If the more complex statement If the more complex statement If the more complex statement If the more complex statement a.b.c.ia.b.c.ia.b.c.ia.b.c.i = 99; throws an NPE, the message would dissect the statement and pinpoint = 99; throws an NPE, the message would dissect the statement and pinpoint = 99; throws an NPE, the message would dissect the statement and pinpoint = 99; throws an NPE, the message would dissect the statement and pinpoint
the cause by showing the full access path which led up to the null:the cause by showing the full access path which led up to the null:the cause by showing the full access path which led up to the null:the cause by showing the full access path which led up to the null:

Exception in thread "main" java.lang.NullPointerException:

Cannot read field "c" because "a.b" is null

at Prog.main(Prog.java:5)

Giving the full access path is more helpful than giving just the name of the null field because it helps the developer to Giving the full access path is more helpful than giving just the name of the null field because it helps the developer to Giving the full access path is more helpful than giving just the name of the null field because it helps the developer to Giving the full access path is more helpful than giving just the name of the null field because it helps the developer to
navigate a line of complex source code, especially if the line of code uses the same name multiple times.navigate a line of complex source code, especially if the line of code uses the same name multiple times.navigate a line of complex source code, especially if the line of code uses the same name multiple times.navigate a line of complex source code, especially if the line of code uses the same name multiple times.

Copyright © 2020 Oracle and/or its affiliates.

JEP’s targeted to JDK 15, so far
This release will be the Reference Implementation of Java SE 15, as specified by
JSR 390 in the Java Community Process.

• FeaturesFeaturesFeaturesFeatures

• 371: 371: 371: 371: Hidden ClassesHidden ClassesHidden ClassesHidden Classes

• 372: 372: 372: 372: Remove the Remove the Remove the Remove the NashornNashornNashornNashorn JavaScript EngineJavaScript EngineJavaScript EngineJavaScript Engine

• 377: 377: 377: 377: ZGC: A Scalable LowZGC: A Scalable LowZGC: A Scalable LowZGC: A Scalable Low----Latency Garbage CollectorLatency Garbage CollectorLatency Garbage CollectorLatency Garbage Collector

• 378: 378: 378: 378: Text BlocksText BlocksText BlocksText Blocks

• 379: 379: 379: 379: Shenandoah: A LowShenandoah: A LowShenandoah: A LowShenandoah: A Low----PausePausePausePause----Time Garbage CollectorTime Garbage CollectorTime Garbage CollectorTime Garbage Collector

JEP 371: Hidden Classes

• Introduce hidden classes, which are classes that cannot be used
directly by the bytecode of other classes

• Hidden classes are intended for use by frameworks that generate
classes at run time and use them indirectly, via reflection

• A hidden class may be defined as a member of an access control
nest, and may be unloaded independently of other classes

Java Eco System and
Commitment to Open

Source

Java Eco System

12 Million developers run Java

#1 Programming language

#1 Developer choice for the cloud

45 Mrd. active Java Virtual Machines

25 Mrd. cloud connected Java Virtual Machines

Graal on GitHub
https://github.com/oracle/graal

GraalVM Open Source Lines of Code
GraalVM Community Edition is built from the sources of 3.6 million lines of code originated by the GraalVM team and
collaborators, and additionally million lines of sources from projects we depend on like Java, Node.js and others

GraalVM Project Advisory Board
https://www.graalvm.org/community/advisory-board/

 The main goals of the GraalVM Project Advisory Board are to:
o Discuss community engagement and contributor interaction

o Provide cumulative feedback from the community and partner ecosystem

o Discuss ways to drive project awareness and adoption

• The Board will meet at least every three months, and the meeting notes will be published at graalvm.org

• Alina Yurenko is the board’s coordinator

 Initial board composition with members nominated by 12 different companies:
• Bernd Mathiske, Amazon. Creator of the Maxine VM, interested in GraalVM Community Edition, GraalVM Native Image, and AWS Lambda on GraalVM.

• Bruno Caballero, Microdoc. Work on GraalVM integrations in the embedded space.

• Chris Seaton, Shopify. Contributors to TruffleRuby — GraalVM Ruby implementation.

• Chris Thalinger, Twitter. Runs GraalVM Community Edition in production on a large scale system and shares their experience with the community.

• Fabio Niephaus, Hasso Plattner Institute. Academic collaborators and developers of GraalSqueak — A Squeak/Smalltalk implementation for GraalVM.

• Graeme Rocher, Object Computing Inc., Developers of Micronaut — a framework for building microservice and serverless applications, integrated with GraalVM.

• Johan Vos, Gluon. Works on JavaFX and client (desktop/mobile/embedded) support for GraalVM native images.

• Max Rydahl Andersen, Red Hat. Developer on Quarkus — A Kubernetes Native Java stack tailored for OpenJDK HotSpot and GraalVM, crafted from the best of breed

Java libraries and standards.

• Michael Hunger, Neo4j. Integrated with GraalVM to support polyglot dynamic languages for user-defined-procedures in Neo4j, a JVM-based graph database.

• Sébastien Deleuze, Pivotal. Spring Framework committer, works on Spring GraalVM native support.

• Thomas Wuerthinger, Oracle. GraalVM Founder and Project Lead.

• Xiaohong Gong, Arm Technology China. Works on GraalVM Compiler Optimizations on AArch64.

GraalVM Architecture

GraalVM Repository Structure

• GraalGraalGraalGraal SDK SDK SDK SDK contains long term supported APIs of contains long term supported APIs of contains long term supported APIs of contains long term supported APIs of GraalVMGraalVMGraalVMGraalVM....

• GraalGraalGraalGraal compiler compiler compiler compiler written in Java that supports both dynamic and static compilation and can written in Java that supports both dynamic and static compilation and can written in Java that supports both dynamic and static compilation and can written in Java that supports both dynamic and static compilation and can
integrate with the Java integrate with the Java integrate with the Java integrate with the Java HotSpotHotSpotHotSpotHotSpot VM or run standalone.VM or run standalone.VM or run standalone.VM or run standalone.

• TruffleTruffleTruffleTruffle language implementation framework for creating languages and instrumentations for language implementation framework for creating languages and instrumentations for language implementation framework for creating languages and instrumentations for language implementation framework for creating languages and instrumentations for
GraalVMGraalVMGraalVMGraalVM....

• ToolsToolsToolsTools contains a set of tools for contains a set of tools for contains a set of tools for contains a set of tools for GraalVMGraalVMGraalVMGraalVM languages implemented with the instrumentation languages implemented with the instrumentation languages implemented with the instrumentation languages implemented with the instrumentation
framework.framework.framework.framework.

• Substrate VM Substrate VM Substrate VM Substrate VM framework that allows aheadframework that allows aheadframework that allows aheadframework that allows ahead----ofofofof----time (AOT) compilation of Java applications time (AOT) compilation of Java applications time (AOT) compilation of Java applications time (AOT) compilation of Java applications
under closedunder closedunder closedunder closed----world assumption into executable images or shared objects.world assumption into executable images or shared objects.world assumption into executable images or shared objects.world assumption into executable images or shared objects.

• SulongSulongSulongSulong is an engine for running LLVM is an engine for running LLVM is an engine for running LLVM is an engine for running LLVM bitcodebitcodebitcodebitcode on on on on GraalVMGraalVMGraalVMGraalVM....

• TRegexTRegexTRegexTRegex is an implementation of regular expressions which leverages is an implementation of regular expressions which leverages is an implementation of regular expressions which leverages is an implementation of regular expressions which leverages GraalVMGraalVMGraalVMGraalVM for efficient for efficient for efficient for efficient
compilation of automata.compilation of automata.compilation of automata.compilation of automata.

• VMVMVMVM includes the components to build a modular includes the components to build a modular includes the components to build a modular includes the components to build a modular GraalVMGraalVMGraalVMGraalVM image.image.image.image.

The The The The GraalVMGraalVMGraalVMGraalVM main source repository includes these componentsmain source repository includes these componentsmain source repository includes these componentsmain source repository includes these components

Java Runtime mit JVM

JIT Compiler

• C1 Client CompilerC1 Client CompilerC1 Client CompilerC1 Client Compiler

 MinimiertMinimiertMinimiertMinimiert StartupStartupStartupStartup----ZeitZeitZeitZeit

• C2 Server CompilerC2 Server CompilerC2 Server CompilerC2 Server Compiler

 DauerhafteDauerhafteDauerhafteDauerhafte PerformancePerformancePerformancePerformance----VerbesserungenVerbesserungenVerbesserungenVerbesserungen

 Intensivere Analyse vom ausgeführten CodeIntensivere Analyse vom ausgeführten CodeIntensivere Analyse vom ausgeführten CodeIntensivere Analyse vom ausgeführten Code

 Optimierungen können besser platziert werdenOptimierungen können besser platziert werdenOptimierungen können besser platziert werdenOptimierungen können besser platziert werden

JIT Compiler with Tiered Compilation

• C1 Client CompilerC1 Client CompilerC1 Client CompilerC1 Client Compiler

 MinimiertMinimiertMinimiertMinimiert StartupStartupStartupStartup----ZeitZeitZeitZeit

 java java java java ----client client client client ----XX:+XX:+XX:+XX:+TieredCompilationTieredCompilationTieredCompilationTieredCompilation

• C2 Server CompilerC2 Server CompilerC2 Server CompilerC2 Server Compiler

 Läuft mit, aber ohne Tiered CompilationLäuft mit, aber ohne Tiered CompilationLäuft mit, aber ohne Tiered CompilationLäuft mit, aber ohne Tiered Compilation

• TieredTieredTieredTiered----Compilation AusführungsCompilation AusführungsCompilation AusführungsCompilation Ausführungs----LevelLevelLevelLevel

 Level 0: interpreted codeLevel 0: interpreted codeLevel 0: interpreted codeLevel 0: interpreted code

 Level 1: simple C1 compiled code (with no profiling)Level 1: simple C1 compiled code (with no profiling)Level 1: simple C1 compiled code (with no profiling)Level 1: simple C1 compiled code (with no profiling)

 Level 2: limited C1 compiled code (with light profiling)Level 2: limited C1 compiled code (with light profiling)Level 2: limited C1 compiled code (with light profiling)Level 2: limited C1 compiled code (with light profiling)

 Level 3: full C1 compiled code (with full profiling)Level 3: full C1 compiled code (with full profiling)Level 3: full C1 compiled code (with full profiling)Level 3: full C1 compiled code (with full profiling)

 Level 4: C2 compiled code (uses profile data from the previous steps)Level 4: C2 compiled code (uses profile data from the previous steps)Level 4: C2 compiled code (uses profile data from the previous steps)Level 4: C2 compiled code (uses profile data from the previous steps)

JIT Compiler working

• InliningInliningInliningInlining

 Code der aufzurufenden Methode/Funktion anstelle des AufrufsCode der aufzurufenden Methode/Funktion anstelle des AufrufsCode der aufzurufenden Methode/Funktion anstelle des AufrufsCode der aufzurufenden Methode/Funktion anstelle des Aufrufs

• OnOnOnOn----Stack ReplacementStack ReplacementStack ReplacementStack Replacement

 LoopLoopLoopLoop----Compilation, ohne auf den Methodenaufruf zu wartenCompilation, ohne auf den Methodenaufruf zu wartenCompilation, ohne auf den Methodenaufruf zu wartenCompilation, ohne auf den Methodenaufruf zu warten

• Escape AnalysisEscape AnalysisEscape AnalysisEscape Analysis

 Automatische StackAutomatische StackAutomatische StackAutomatische Stack----Allokation, ohne GCAllokation, ohne GCAllokation, ohne GCAllokation, ohne GC

• DeDeDeDe----OptimierungOptimierungOptimierungOptimierung

 Optimierung rückgängig machenOptimierung rückgängig machenOptimierung rückgängig machenOptimierung rückgängig machen

JIT Compiler written in C++

JIT Compiler written in Java

GraalVM

• GraalGraalGraalGraal
 JIT CompilerJIT CompilerJIT CompilerJIT Compiler

o GraalGraalGraalGraal in in in in GraalVMGraalVMGraalVMGraalVM ---- A new Java JIT CompilerA new Java JIT CompilerA new Java JIT CompilerA new Java JIT Compiler

 Graal integrated via Graal integrated via Graal integrated via Graal integrated via Java Virtual Machine Compiler Interface (JVM CI)Java Virtual Machine Compiler Interface (JVM CI)Java Virtual Machine Compiler Interface (JVM CI)Java Virtual Machine Compiler Interface (JVM CI)

 Use a JDK with Graal (jdk.internal.vm.compiler)Use a JDK with Graal (jdk.internal.vm.compiler)Use a JDK with Graal (jdk.internal.vm.compiler)Use a JDK with Graal (jdk.internal.vm.compiler)

 java java java java ––––XX:+UnlockExperimentalVMOptions XX:+UnlockExperimentalVMOptions XX:+UnlockExperimentalVMOptions XX:+UnlockExperimentalVMOptions ––––XX:+EnableJVMCI XX:+EnableJVMCI XX:+EnableJVMCI XX:+EnableJVMCI ––––XX:+UseJVMCICompiler XX:+UseJVMCICompiler XX:+UseJVMCICompiler XX:+UseJVMCICompiler ––––jar my_file.jarjar my_file.jarjar my_file.jarjar my_file.jar

• TruffleTruffleTruffleTruffle
 Language Implementation FrameworkLanguage Implementation FrameworkLanguage Implementation FrameworkLanguage Implementation Framework

• Substrate VMSubstrate VMSubstrate VMSubstrate VM
 Runtime Library and a Runtime Library and a Runtime Library and a Runtime Library and a set set set set of of of of tools for building tools for building tools for building tools for building Java AOT Java AOT Java AOT Java AOT compiled compiled compiled compiled ccccodeodeodeode

GraalVM - Polyglot (1)

GraalVM - Polyglot (2)

GraalVM - Language Usability

Production-Ready Experimental Visionary

Java Ruby Python

Scala, Groovy, Kotlin R VSCode Plugin

JavaScript LLVM Tool Chain GPU Integration

Node.js WebAssembly

Native Image LLVM Backend

VisualVM

Copyright © 2020, Oracle and/or its affiliates. All rights reserved. | Confidential – Oracle Internal/Restricted/Highly Restricted

standalone

Automatic transformation of interpreters to compilers

Engine integration native and managed

Copyright © 2020, Oracle and/or its affiliates. All rights reserved. |

Java HotSpot VM

Graal Compiler

Copyright © 2020, Oracle and/or its affiliates. All rights reserved. |

Java HotSpot VM

Graal Compiler

Truffle Framework

Sulong (LLVM)(LLVM)(LLVM)(LLVM)

Copyright © 2020, Oracle and/or its affiliates. All rights reserved. | Confidential – Oracle Internal/Restricted/Highly Restricted

 Test your applications with GraalVM
• Documentation and downloads

httphttphttphttp://www.graalvm.org://www.graalvm.org://www.graalvm.org://www.graalvm.org

 Connect your technology with GraalVM
• Integrate GraalVM into your application

• Run your own programming language or DSL

• Build language-agnostic tools

 Performance – Native Image
• Startup time 20msStartup time 20msStartup time 20msStartup time 20ms

• Memory consumption less than Memory consumption less than Memory consumption less than Memory consumption less than 20MB20MB20MB20MB

GraalVMGraalVMGraalVMGraalVM ---- Top Top Top Top 10 10 10 10 EinsatzgebieteEinsatzgebieteEinsatzgebieteEinsatzgebiete

1. High-performance modern Java

2. Low-footprint, fast-startup Java

3. Combine JavaScript, Java, Ruby, and R

4. Run native languages on the JVM

5. Tools that work across all languages

6. Extend a JVM-based application

7. Extend a native application

8. Java code as a native library

9. Polyglot in the database

10. Create your own language

Copyright © 2020, Oracle and/or its affiliates. All rights reserved. | Confidential – Oracle Internal/Restricted/Highly Restricted

MicroservicesMicroservicesMicroservicesMicroservices
ArchitekturArchitekturArchitekturArchitektur mitmitmitmit
GraalVMGraalVMGraalVMGraalVM

What GraalVM is for Microservices and
Cloud Runtime

Copyright © 2020, Oracle and/or its affiliates

Java VM

Your Java /Java Bytecode

Application

Java VM

Java Service

Java VM

Java Service

Java JIT CompilerJava JIT Compiler Java JIT Compiler

What GraalVM is for Microservices and
Cloud Runtime

Copyright © 2020, Oracle and/or its affiliates

Your Java /Java Bytecode

Application (Native Binary)

GraalVM

Java Service

(Native Binary)

GraalVM

Java Service

(Native Binary)

GraalVM

Up to 5x Less Memory

100x Faster Startup

983 ms

1967 ms

979 ms

11 ms

30 ms

23 ms

0 ms 200 ms 400 ms 600 ms 800 ms 1000 ms 1200 ms 1400 ms 1600 ms 1800 ms 2000 ms

Quarkus

Micronaut

Helidon

GraalVM Native Image

JDK 8

Cloud Services – Startup Time

Copyright © 2020, Oracle and/or its affiliates

42x

65x

93x

160 MByte

198 MByte

107 MByte

16 MByte

37 MByte

26 MByte

0 MByte 50 MByte 100 MByte 150 MByte 200 MByte 250 MByte

Quarkus

Micronaut

Helidon

GraalVM Native Image

JDK 8

Cloud Services – Memory Footprint

Copyright © 2020, Oracle and/or its affiliates

5x

4x

10x

GraalVM Performance

GraalVM Performance on Java

Copyright © 2020, Oracle and/or its affiliates

Java VM

Your Java /Java Bytecode

Application

Java JIT Compiler

High Performance

GraalVM Performance on Java

Copyright © 2020, Oracle and/or its affiliates

Java VM

Your Java /Java Bytecode

Application

GraalVM JIT Compiler

32% Faster Execution on average

Better Performance: Java

Oracle GraalVM Enterprise Edition speeds up Java applications by 32% 32% 32% 32% on average.
Renaissance is the best benchmark for Java. It represents large, real-world Java applications.

GraalVM Enterprise hast 62 optimizations algorithms that optimizes your existing Java Code while running on GraalVM

For some time of Workloads the performance increase can be even bigger

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

1
,0

2 1
,2

7 1
,5

3

1
,1

0 1
,3

6

1
,3

7

1
,1

7

1
,4

9

1
,1

4

1
,1

4

1
,9

6

1
,0

3

1
,0

3

3
,0

8

1
,3

5

1
,1

0

1
,1

2

1
,1

3

1
,6

6

1
,1

7

1
,5

9

1
.3

2

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

S
p

e
e

d
u

p
 v

s
JD

K
8

Renaissance Benchmark: http://Renaissance.dev

• Implementing GraalVM Enterprise for Scala, customers enjoy even higher performance improvement
(average of 38%).(average of 38%).(average of 38%).(average of 38%).

• A 38% 38% 38% 38% performance improvement translates into:

Shorter application response time > better customer experience

Less memory/CPU usage > Less IT spending

Faster build time - development > deploy cycles

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

Better Performance: Scala

1
,6

2

2
,6

2

1
,4

0

1
,2

4 1
,4

4

1
,1

9

1
,3

4

0
,8

4

1
,1

9

1
,0

2

2
,0

0

1
,3

8

0,00

0,50

1,00

1,50

2,00

2,50

3,00

S
p

e
e

d
u

p
 v

s
JD

K
8

Scalabench

GraalVM Downloads

GraalVM Downloads

Community EditionCommunity EditionCommunity EditionCommunity Edition

GraalVM Community is available for free for any
use. It is built from the GraalVM sources available
on GitHub. We provide pre-built binaries for
Linux/X86, Linux/ARM, macOS, and Windows
platforms on x86 64-bit systems. Support for the
Windows and Linux/ARM platforms, and the
Python, Ruby and R languages is experimental.

NoteNoteNoteNote
GraalVM Community Edition contains significant
technology from other projects including
OpenJDK and Node.js which are not maintained
by the GraalVM community. GraalVM Enterprise
Edition is recommended for production
applications.

Enterprise EditionEnterprise EditionEnterprise EditionEnterprise Edition

GraalVM Enterprise provides additional performance,
security, and scalability relevant for running
applications in production. You can get a version of
GraalVM Enterprise that is free for evaluation and
developing new applications via the Oracle
Technology Network (OTN), or a commercially
licensed version for production use via the Oracle
Store.

We provide binaries for Linux, macOS, and Windows
platforms on x86 64-bit systems. Support for the
Windows and Linux/ARM platforms, and the Python,
Ruby and R languages is experimental.

GraalVM – Downloads
GraalVM is distributed as Community Edition and Enterprise Edition. Listed below are bundles available:

• GraalVM EE 20.0.1 based on Oracle Java 8u251

• GraalVM CE 20.0.0 based on OpenJDK 8u242

• GraalVM EE 20.0.1 based on Oracle Java 11.0.7

• GraalVM CE 20.0.0 based on OpenJDK 11.0.6

• OS: Linux, macOS, Windows

• https://www.graalvm.org/downloads/

GraalVM – Downloads
GraalVM is distributed as Community Edition and Enterprise Edition. Listed below are bundles available:

• GraalVM EE 20.0.1 based on Oracle Java 8u251

• GraalVM CE 20.0.0 based on OpenJDK 8u242

• GraalVM EE 20.0.1 based on Oracle Java 11.0.7

• GraalVM CE 20.0.0 based on OpenJDK 11.0.6

• OS: Linux, macOS, Windows

• https://www.graalvm.org/downloads/

GraalVM – Ideal Graph Visualizer
https://www.oracle.com/downloads/graalvmhttps://www.oracle.com/downloads/graalvmhttps://www.oracle.com/downloads/graalvmhttps://www.oracle.com/downloads/graalvm----downloads.htmldownloads.htmldownloads.htmldownloads.html

• Ideal Graph Visualizer (IGV) allows GraalVM

language developers to analyze compilation graphs

• It is also useful for guest script developers if they

need to optimize their scripts performance on top

of GraalVM

• IGV is no longer a part of GraalVM distribution

Copyright © 2020, Oracle and/or its affiliates. All rights reserved. |

GraalVM Footprint

Run smaller images – Remove parts
of Java you don’t use

Java Java Java Java SE SE SE SE 14 14 14 14 with jlink with jlink with jlink with jlink vsvsvsvs. . . . Java Java Java Java SE SE SE SE 14 14 14 14 with JREwith JREwith JREwith JRE

New New New New Project: Project: Project: Project: Leyden (1)Leyden (1)Leyden (1)Leyden (1)

• New Project, Leyden, whose primary goal will be to address the long-term pain

points of Java’s slow startup time, slow time to peak performance, and large

footprint.

• Leyden will address these pain points by introducing a concept of _static images_

to the Java Platform, and to the JDK.

– A static image is a standalone program, derived from an application, which runs

that application -- and no other.

– A static image is a closed world: It cannot load classes from outside the image,

nor can it spin new bytecodes at run time.

New New New New Project: Project: Project: Project: Leyden (2)Leyden (2)Leyden (2)Leyden (2)

• Project Leyden will take inspiration from past efforts to explore this space,

including the GNU Compiler for Java and the Native Image feature of GraalVM.

Leyden will add static images to the Java Platform Specification, and we expect

that GraalVM will evolve to implement that specification. Developers who use only

the standard, specified static-image feature will then be able to switch with ease

between Leyden (in the JDK), Native Image (in GraalVM), and whatever other

conforming implementations may arise, choosing amongst tradeoffs of compile

time, startup time, and image size.

• We do not intend to implement Leyden by merging the Native Image code from

GraalVM into the JDK. Leyden will, rather, be based upon existing components in

the JDK such as the HotSpot JVM, the `jaotc` ahead-of-time compiler, application

class-data sharing, and the `jlink` linking tool.

Run smaller images – Java
• GraalVM compiles Java source to a single native binaryGraalVM compiles Java source to a single native binaryGraalVM compiles Java source to a single native binaryGraalVM compiles Java source to a single native binary

• Tiny image sizesTiny image sizesTiny image sizesTiny image sizes

• Low Low Low Low VM overheadVM overheadVM overheadVM overhead

GraalVM Native Image

GraalVM Native ImageGraalVM Native ImageGraalVM Native ImageGraalVM Native Image

• Makes your Java code ready for the Cloud

• Instant startup

• Low memory footprint

• Single self-contained binary

GraalVM Native ImageGraalVM Native ImageGraalVM Native ImageGraalVM Native Image

GraalVM Native GraalVM Native GraalVM Native GraalVM Native ImageImageImageImage Generation OptionsGeneration OptionsGeneration OptionsGeneration Options
https://www.graalvm.org/docs/referencehttps://www.graalvm.org/docs/referencehttps://www.graalvm.org/docs/referencehttps://www.graalvm.org/docs/reference----manual/nativemanual/nativemanual/nativemanual/native----imageimageimageimage////

The native-image command line needs to provide the class path for all classes

using the familiar option from the java launcher: -cp is followed by a list of

directories or .jar files, separated by :. The name of the class containing the

main method is the last argument; or you can use -jar and provide a .jar file

that specifies the main method in its manifest.

The syntax of the native-image command is:

• native-image [options] class to build an executable file for a class in the

current working directory. Invoking it executes the native-compiled code of that class.

• native-image [options] -jar jarfile to build an image for a jar file.

GraalVM Native GraalVM Native GraalVM Native GraalVM Native ImageImageImageImage Generation OptionsGeneration OptionsGeneration OptionsGeneration Options
https://www.graalvm.org/docs/referencehttps://www.graalvm.org/docs/referencehttps://www.graalvm.org/docs/referencehttps://www.graalvm.org/docs/reference----manual/nativemanual/nativemanual/nativemanual/native----imageimageimageimage////

$ /src

$ /home/wolf/graal/graalvm-ee-19.2.1/jre/bin/native-image –cp HelloWorld.class

• The pointsThe pointsThe pointsThe points----to analysis needs to see all bytecodeto analysis needs to see all bytecodeto analysis needs to see all bytecodeto analysis needs to see all bytecode

– Otherwise aggressive AOT optimizations are not possible

– Otherwise unused classes, methods, and fields cannot be removed

– Otherwise a class loader / bytecode interpreter is necessary at run time

• Dynamic parts of Java require configuration at build timeDynamic parts of Java require configuration at build timeDynamic parts of Java require configuration at build timeDynamic parts of Java require configuration at build time

– Reflection, JNI, Proxy, resources, ...

– That’s what this talk is about

• No loading of new classes at run timeNo loading of new classes at run timeNo loading of new classes at run timeNo loading of new classes at run time

Closed World Assumption

• Execution at run time starts with an initial heap: the “image heap”Execution at run time starts with an initial heap: the “image heap”Execution at run time starts with an initial heap: the “image heap”Execution at run time starts with an initial heap: the “image heap”

– Objects are allocated in the Java VM that runs the image generator

– Heap snapshotting gathers all objects that are reachable at run time

• Do things once at build time instead at every application startupDo things once at build time instead at every application startupDo things once at build time instead at every application startupDo things once at build time instead at every application startup

– Class initializers, initializers for static and static final fields

– Explicit code that is part of a so-called “Feature”

• Examples for objects in the image heapExamples for objects in the image heapExamples for objects in the image heapExamples for objects in the image heap

– java.lang.Class objects, Enum constants

Image Heap

One Compiler, Many Configurations

© 2019 Oracle

Java Java Java Java HotSpotHotSpotHotSpotHotSpot VMVMVMVM

Executes

Your ApplicationYour ApplicationYour ApplicationYour Application

JIT Compilation

1111

1111 Compiler configured for just-in-time compilation inside the Java HotSpot VM

GraalVM
Compiler

App.jar

One Compiler, Many Configurations

© 2019 Oracle

Java Java Java Java HotSpotHotSpotHotSpotHotSpot VMVMVMVM

Executes

Your ApplicationYour ApplicationYour ApplicationYour Application

JIT Compilation

1111

1111 Compiler configured for just-in-time compilation inside the Java HotSpot VM

2222 Compiler also used for just-in-time compilation of JavaScript code

GraalVM
Compiler

GraalJSApp.jar

2222

One Compiler, Many Configurations

© 2019 Oracle

Java Java Java Java HotSpotHotSpotHotSpotHotSpot VMVMVMVM

Executes

Native Image GeneratorNative Image GeneratorNative Image GeneratorNative Image Generator

Points-to Analysis AOT CompilationJIT Compilation

Native ImageNative ImageNative ImageNative Image

Builds

1111

1111 Compiler configured for just-in-time compilation inside the Java HotSpot VM

2222 Compiler configured for static points-to analysis

3333 Compiler configured for ahead-of-time compilation

GraalVM
Compiler 2222

GraalVM
Compiler 3333

GraalVM
Compiler

Your
Application

One Compiler, Many Configurations

© 2019 Oracle

Java Java Java Java HotSpotHotSpotHotSpotHotSpot VMVMVMVM

Executes

Native Image GeneratorNative Image GeneratorNative Image GeneratorNative Image Generator

Points-to Analysis AOT CompilationJIT Compilation

Native ImageNative ImageNative ImageNative Image

JIT Compilation

GraalJSBuilds

1111

1111 Compiler configured for just-in-time compilation inside the Java HotSpot VM

2222 Compiler configured for static points-to analysis

3333 Compiler configured for ahead-of-time compilation

4444 Compiler configured for just-in-time compilation inside a Native Image

GraalVM
Compiler 2222

GraalVM
Compiler 3333

GraalVM
Compiler

4444

GraalVM
Compiler

Native Image - Details

© 2019 Oracle

Ahead-of-Time
Compilation

Application

Libraries

JDK

Substrate VM

Points-to Analysis

Run Initializations

Heap Snapshotting

Input:
All classes from application,

libraries, and VM

Iterative analysis until
fixed point is reached

Code in
Text Section

Image Heap in
Data SectionImage Heap

Writing

Output:
Native executable

Benefits of the Image Heap

© 2019 Oracle

Without GraalVM
Native Image

Build time

Run time

GraalVM Native Image
(default)

Build time

Run time

GraalVM Native Image:
Load configuration file

at build time

Build time

Run time

Load Classes

Load Configuration File

Run Workload

Compile Sources

Load Classes

Load Configuration File

Run Workload

Compile Sources

Load Classes

Load Configuration File

Run Workload

Compile Sources

Roadmap

GraalVM Version GraalVM Version GraalVM Version GraalVM Version RoadmapRoadmapRoadmapRoadmap –––– Major Versions Major Versions Major Versions Major Versions

We release new major versions of GraalVM every 3 months

on a predictable schedule, always to the closest Tuesday to

the 17th of the month of February, May, August, and

November

Major releases become inactive once a new release is

published

Only the last major release of the year continues to be

updated for the full next year

GraalVM Version GraalVM Version GraalVM Version GraalVM Version RoadmapRoadmapRoadmapRoadmap ---- Critical Critical Critical Critical Patch Patch Patch Patch UpdatesUpdatesUpdatesUpdates

Critical Patch Updates (CPU) for GraalVM follow the

schedule for all CPU releases of Oracle as described here.

The release happens quarterly always on the closest

Tuesday to the 17th of the month of January, April, July, and

October

All active releases receive patch updates

GraalVM Version GraalVM Version GraalVM Version GraalVM Version RoadmapRoadmapRoadmapRoadmap –––– Release DatesRelease DatesRelease DatesRelease Dates

Find below a graphical visualizations of the release roadmap

and the dates and version numbers of upcoming releases

• Aug 20, 2019: 19.2

• Oct 15, 2019: 19.2.1 (CPU)

• Nov 19, 2019: 19.3

• Jan 14, 2020: 19.3.1 (CPU)

• Feb 18, 2020: 20.0

• Apr 14, 2020: 19.3.2 (CPU), 20.0.1 (CPU)

• May 19, 2020: 20.1

• Jul 14, 2020: 19.3.3 (CPU), 20.1.1 (CPU)

• Aug 18, 2020: 20.2

• Oct 20, 2020: 19.3.4 (CPU), 20.2.1 (CPU)

• Nov 17, 2020: 20.3

• Jan 19, 2021: 20.3.1 (CPU)

• Feb 16, 2021: 21.0

• Apr 20, 2021: 20.3.2 (CPU), 21.0.1 (CPU)

• May 18, 2021: 21.1

• Jul 20, 2021: 20.3.3 (CPU), 21.1.1 (CPU)

• Aug 17, 2021: 21.2

• Oct 19, 2021: 20.3.4 (CPU), 21.2.1 (CPU)

• Nov 16, 2021: 21.3

Summary

Copyright © 2020, Oracle and/or its affiliates. All rights reserved. | Confidential – Oracle Internal/Restricted/Highly Restricted

 GraalVM is the new universal VM
• Documentation and downloads:

 httphttphttphttp://://://://www.graalvm.orgwww.graalvm.orgwww.graalvm.orgwww.graalvm.org

 Connect your technology with GraalVM
• Integrate GraalVM into your application

• Run your own programming language or DSL

• Build language-agnostic tools

 Works well with open source projects
• Eclipse Vert.x Tool-Kit, Fn Project, Gluon Client Plugin,

Picocli Java-Command-Line-Parser

• Helidon, Micronaut, Quarkus

 Features a native-image tool
• Converts Java to native machine code using AOT

 Footprint – Native Image
• Startup time 20ms

• Memory consumption less than 20MB

Building a universal VM is a community effort

https://jaxenter.de/java/graalvm-virtual-machine-java-oracle-91288

Danke!
Wolfgang.Weigend@oracle.com

Twitter: @wolflook

https://https://https://https://jaxenter.de/java/graalvmjaxenter.de/java/graalvmjaxenter.de/java/graalvmjaxenter.de/java/graalvm----virtualvirtualvirtualvirtual----machinemachinemachinemachine----javajavajavajava----oracleoracleoracleoracle----91288912889128891288

